
ShadowGC: Cooperative Garbage Collection with Multi-level Buffer
for Performance Improvement in NAND flash-based SSDs

Jinhua Cui∗, Youtao Zhang†, Jianhang Huang∗, Weiguo Wu∗, Jun Yang†
∗Xi’an Jiaotong University

cjhnicole@gmail.com, wgwu@xjtu.edu.cn, huangjhsx@gmail.com
†University of Pittsburgh

zhangyt@cs.pitt.edu, juy9@pitt.edu

Abstract—Garbage collection, an essential background activity
in NAND flash based SSDs, often introduces large runtime
overhead. Recent studies showed that it is beneficial to separate
the flash pages that have dirty copies in the write buffers from
those that do not. However, the existing schemes exploring
this observation have limitations, which prevent them from
maximizing the performance improvement.

In this paper, we address the above challenge through
ShadowGC, a novel GC design that exploits the pages in both
host-side and device-side write buffers and adopts different
read and write strategies to minimize the GC overhead. When
garbage collecting flash pages that have dirty copies in the
device-side write buffer, ShadowGC reads data from the write
buffer. When garbage collecting flash pages that have dirty
copies in the host-side write buffer, ShadowGC moves them to
dedicated blocks and speeds up the movement with fast-write
operations. Our experimental results show that, on average,
ShadowGC reduces the write amplification by 16.2% and the
GC latency by 20.5% over the state-of-the-art.

1. Introduction

NAND flash-based solid-state drives (SSDs) are increas-
ingly adopted in modern computer systems, ranging from
personal computers to large-scale cloud servers. Comparing
to traditional hard disk drives (HDDs), SSDs have many
advantages such as lower power consumption, smaller shock
resistance and noise, and 5000x more IOPS at 1% of the
latency [1]. However, NAND flash memory has several
shortcomings due to its physical characteristics: write-once
property (a previously written page cannot be updated until
the block with that page is erased), and asymmetric opera-
tion units (space is reclaimed in units of multi-page erase
blocks, where a page is the access unit). These character-
istics create the requirement for an Flash Translation Layer
(FTL), which is responsible for mapping logical addresses
from a file system to physical addresses in SSDs.

Garbage collection (GC) is an essential background ac-
tivity in FTL [2]. When the number of clean flash blocks
falls below a threshold, GC is invoked to reclaim used
blocks. The overhead of GC comes from two folds: (1) a
block can be erased only after copying the valid pages in the

block to other places. Moving these pages leads to extra flash
write operations, which is referred to as write amplification
issue. (2) An I/O operation, in particular, a read operation, if
having resource conflicts with ongoing GC operations, may
suffer from a long access latency, which leads to large I/O
access latency variations.

Over the past decade, much effort has been invested
to minimize the GC overhead. This includes reducing the
number of GC operations through better page layout [4],
cell reuse [5], [6], and tail delay minimization [7], [8], [9].
Recent studies [10], [11] proposed to exploit the valid pages
that have dirty copies in the write buffers. Since the pages in
the write buffer tend to be written back soon, it is beneficial
to separate their corresponding copies in the SSD from other
valid pages. However, the existing schemes that explore this
observation have limitations. The skip policy adopted in [11]
is applicable only to systems with non-volatile write buffers.
The delay policy adopted in [10] was designed for systems
with super large write buffers, which becomes less effective
for mainstream commodity systems. Both schemes did not
differentiate the write buffers that exist at host side and at
device side in the flash-based storage system.

In this paper, the flash pages that have dirty copies in
the write buffers are referred to as shadows. We propose
ShadowGC, a novel GC design to effectively exploit the
shadows for performance improvement. We summarize our
contributions as follows.

• When garbage collecting the shadow pages that have
dirty copies in the host-side write buffer, we relocate
the shadows to dedicated blocks and choose fast write
mode to program them, which effectively mitigate both
write amplification and latency issues. Given shadows
have short lifetime, most pages in the dedicated blocks
would become invalid when they are to be reclaimed. By
adopting fast write mode, we significantly speed up page
write operations and thus reduce the average GC latency.

• When garbage collecting the shadow pages that have dirty
copies in the device-side write buffer, we choose to read
the contents from the write buffer, which mitigates both
write amplification and latency issues too. By merging
the write-back operations of the buffer with the page
relocation operations in GC, we effectively reduce the

1247978-3-9819263-0-9/DATE18/ c©2018 EDAA



number of extra writes. By copying the data from the
write buffer, we skip the long latency flash read and, in
particular, the ECC check and correction overhead, which
reduces the average GC latency.

• We evaluate the proposed ShadowGC scheme and com-
pare it to the state-of-the-art. Our experimental results
show that, on average, ShadowGC reduces the write am-
plification by 16.2% and the GC latency by 20.5% over
the state-of-the-art.

The rest of this paper is organized as follows. Section
2 presents the background and motivation. Section 3 elab-
orates the proposed ShadowGC scheme for flash storage
devices. Experiments and result analysis are presented in
Section 4. Section 5 concludes the paper.

2. Background and Motivation

In this section, we first introduce the background ac-
tivities in the FTL of SSD. We then study the real-world
workload characteristics that motivate the ShadowGC de-
sign.

2.1. Background Activities in SSDs

In addition to the host generated I/O activities, NAND
flash-based SSDs should handle the FTL generated back-
ground activities, which causes write amplification and la-
tency issues. We go over two important modules as below.

Garbage collection (GC): GC is needed to reclaim
wasted space occupied by invalid pages, which are in-
evitably created after logical-to-physical remapping. When
the number of clean flash blocks falls below a certain thresh-
old, GC is invoked to generate clean blocks by selecting
a block with invalid pages and erasing it after copying
valid pages to a free block. As a result, host generated
I/O requests which access GC-ing chips will be blocked.
A lot of works have shown that GC can induce significant
performance variation problem and the worst-case latency
can be much higher than HDDs, which is unbearable for
high performance computing and enterprise environments
[9]. In addition to the GC latency, write amplification is
another important problem to SSD lifetime.

Refresh: The goal of refresh is to improve flash lifetime
by periodically reading, correcting, and in-place reprogram-
ming or remapping the stored data before the retention
induced raw bit error rates (RBER) exceed the Error Cor-
rection Code (ECC) capability [3]. Refresh also induce
significant performance variation and write amplification.

2.2. Motivation

There often exist two levels of write buffers in SSD
based computer systems: (1) a host-side buffer that is man-
aged by file system; and (2) a device-side write buffer that
is managed by SSD controller. The up-to-date (dirty) data
in the write buffers not only prevent write operations from
throttling the system performance, but also exploit access

locality by adopting LRU replacement policy. Given that the
dirty pages in the write buffers are likely to be expunged in
short period of time, recent studies proposed to differentiate
these pages from other valid pages in the SSDs [10], [11].
These pages are also referred to as zombie pages.

We studied the I/O footprint and the total number of
write operations in fifteen real world traces that reflect one-
week enterprise server operations. The experimental details
are in Section 4.1. The footprint is represented using the cu-
mulative number of written LBAs (logical block addresses).
Of the fifteen workloads that we tested, nine workloads are
similar to Figure 1(a), five workloads are similar to Figure
1(b), and only one workload, i.e., web2 is as Figure 1(c).
For Figure 1(a), the written LBA space grows very slowly
such that most write operations fall in the pages in the write
buffers. When a greedy GC (the one in the baseline system)
is invoked, many valid pages in the victim block would
be zombie/shadow pages. For Figure 1(b), the LBA space
grows at modest rate. However, we still found phases that
the grow of LBA space pauses even though the number of
writes grows linearly. That is, most writes in these phases
tend to fall in the write buffers. Only in the web2 workload
(Figure 1(c)), the LBA space grows almost linearly such that
the pages in the write buffers have little reuse opportunities.

To exploit the pages in the write buffers to reduce GC
overheads, Lee et al. [11] proposed to skip copying zombie
pages if the write buffers are non-volatile. The skip policy
cannot be applied to volatile write buffers as otherwise a
failure event would leave the system in inconsistent state.
Lee et al. [10] proposed to delay garbage collecting flash
blocks if they contain many zombie pages. The design was
proposed for systems with large write buffers, e.g., 4GB
RAM for a 12GB RAM system [10]. For the mainstream
flash based systems, the delay policy tends to lose its
effectiveness, as shown in our preliminary study next.

Figure 2 compares the baseline Greedy GC with (1)
Greedy+delay, (2) Greedy+separation; and (3)
Zombie [10] schemes. Greedy+delay is the scheme
developed on top of the baseine. It delays the selec-
tion of blocks with many zombie pages as victim blocks.
Greedy+separation is the scheme that enhances the
greedy GC by placing zombie pages in dedicated blocks.
Greedy+separation adopts the same greedy strate-
gy as that in the baseline in determining victim blocks,
i.e., choosing the block with the least number of valid
pages. Zombie is the scheme in [10], which enhances
Greedy+separation by delaying the selection of blocks
with many zombie pages. From the figure, while placing
zombie pages to dedicated blocks is an effective mechanism
for performance improvement, the delay policy tends to
degrade the performance. This is because, for workloads
with good access locality, the blocks that are likely to be
chosen as victim blocks contain many zombie pages. Delay-
ing choosing such blocks results in choosing the blocks with
more valid pages, resulting in larger page copying overhead.

To summarize, while it is beneficial to differentiate
zombie/shadow pages from other valid pages in SSDs, we
need to develop novel schemes to fully exploit the potentials.

1248 Design, Automation And Test in Europe (DATE 2018)



(a) src12 (b) prn1 (c) web2
Figure 1. Compare I/O footpritn (i.e., the LBA size) and the total number of writes in representative traces.

(a) Write amplification (b) GC latency
Figure 2. Separating zombie pages is effective for performance improvement.

3. Cooperative Garbage Collection with Multi-
level Buffer

In this section, we present ShadowGC, a novel GC
design for mitigating GC induced write amplification and
latency issues. We first present an overview of the design
and then elaborate its details and analyze its overhead.

3.1. System Overview

Figure 3 presents the SSD based storage system that has
ShadowGC embedded in the SSD controller. There exist two
write buffers: a host-side write buffer and a device-side write
buffer. ShadowGC exploits the pages in both buffers for
performance improvement. It consists of two components:
(1) Shadow state manager, (2) GC operation optimizer.

Figure 3. System Overview with ShadowGC.

The shadow state manager in ShadowGC tracks the
runtime states of all device pages to assist the GC operation
optimizer in enhancing the performance of garbage collec-
tion. In particular, it tracks if the corresponding logic page,
i.e., the logic page saved at the tracked device page location,
has dirty copies residing in one or both of the write buffers.
That is, if these device pages are shadows. When relocating

valid pages from a victim block at garbage collection time,
ShadowGC checks their runtime states and adopts different
relocation strategies — for the shadow pages that have dirty
copies in the device-side buffer, the GC operation optimizer
in ShadowGC extracts the page content from the write
buffer, which merges the buffer write back operation with
the GC page relocation operation. For the shadow pages that
have dirty copies in the host-side buffer, the GC operation
optimizer relocates them to dedicated blocks and uses fast
write mode to program them.

Since the pages programmed with fast write mode tend
to have short retention time, ShadowGC keeps two refresh
queues: one to track blocks written in normal write mode;
the other for those written in fast write mode. The latter
adopts a smaller refresh interval to prevent potential data
corruption problems.

ShadowGC minimize its runtime overhead by avoiding
changes to the effective policies in the baseline. For ex-
ample, it adopts the greedy victim block selection, which
prevents choosing pages that have more valid pages. While
we exploit the pages saved in the write buffers, we keep
the buffer replacement algorithm the same as the that in the
baseline. We may adopt the traditional LRU (least recently
used) algorithm or the state-of-the-art flash-aware buffer
replacement algorithms such as CFLRU [12], PTLRU [13]
and BPLRU [14].

3.2. Shadow State Manager

To differentiate flash pages that may have dirty copies
in different write buffers, the shadow state manager in
ShadowGC attaches a 3-bit flag to each flash page to track its
state at runtime. As a comparison, a traditional GC uses 1-bit
flag to differentiate two types of flash pages, i.e., valid/free
and invalid pages. ShadowGC refines the valid/free state to
four different states as follows.

• 000: invalid pages;

Design, Automation And Test in Europe (DATE 2018) 1249



• 011: host-shadow pages, i.e., the valid pages with dirty
copies in the host-side write buffer;

• 101: device-shadow pages, i.e., the valid pages with
dirty copies in the device-side write buffer;

• 111: twin-shadow pages, i.e., the valid pages with dirty
copies in both write buffers;

• 001: other valid or free pages.

3312 000 101 111 011 ... 001 011 000 000

Page State (3 bits)

Block ID (4 bytes) Bitmap (3×N bits)

Figure 4. The bitmap for page states in the shadow state manager.

The 3-bit flag tracks a mix of the device page state (i.e.,
if the page is valid or not) and logical page state (i.e., if the
page has shadow copy). A valid device page is labeled as
being in shadow state if its corresponding logical page has
dirty copies residing in one or both write buffers. ShadowGC
stores the states of all pages in a shadow table. As shown in
Figure 4, a shadow entry stores the metadata of one block,
which consists of one 4B block ID and 3×N-bits pages state
information, where N is the number of pages in each block.

When logic flash pages are updated in the device side
write buffer, ShadowGC updates the shadow table accord-
ingly, with the assistance of FTL. When logic pages are
inserted to or expunged from the host side write buffer,
ShadowGC passes their logical addresses to the SSD con-
troller by embedding the information within the following
I/O read/write commands, which incurs no additional mes-
sages. For example, the serial ATA (SATA) 2.6 interface has
5B reserved/unused fields that may be utilized to embed the
notification.

Figure 5. The state transition diagram in ShadowGC.

Figure 5 illustrates the state transition in ShadowGC.
For a valid flash page, whenever a write request update its
data in the host buffer, the state becomes host-shadow. If it is
evicted from host buffer and added into the device buffer, the
state changes to device-shadow. If an update request arrives
again, which means the flash page is cached in both host
buffer and device buffer, the state becomes twin-shadow.
When storage system restarts, all three shadow states return
to valid. Note that when a twin-shadow page is evicted from
device buffer, it is simply discarded without flushing even
if it is dirty for the reason that the up-to-date data is still
cached in the host buffer.

3.3. ShadowGC Details

The GC operation optimizer enhances the read, program,
and refresh operations performed during garbage collection.
ShadowGC is triggered when the number of clean blocks
drops below a certain threshold. Similar as that in the
baseline (i.e., the Greedy GC), ShadowGC chooses the block
that has the least number of valid pages as the victim block.
The selection policy in ShadowGC does not differentiate the
refined states of valid pages. We then discuss how to process
the chosen victim block.

Page read policy. ShadowGC needs to relocate the valid
pages in the victim block before erasing it. It reads the
page content from different locations based on the state
of the valid page. For the pages that have dirty copies in
the device-side write buffer, i.e., the valid page is in either
device-shadow or twin-shadow state, ShadowGC reads the
data directly from the write buffer and clears the page’s dirty
bit in the write buffer. Otherwise, it reads the data from the
victim block and uses the ECC to correct read errors (if
any), the same as the baseline.

Reading page content from the device side write buffer
exhibits two advantages: (i) it merges the GC page copy
operation and write back operation of the write buffer. Shad-
owGC converts the dirty copy in the write buffer to clean
page such that expunging it at a later time does not incur
additional device write operations. This helps to mitigate
the write amplification issue in GC. (ii) since reading the
data from the write buffer does not need expensive ECC
operation, the read latency can be effectively reduced. This
helps to mitigate the GC latency overhead.

Page relocation policy. ShadowGC then relocates the
valid pages in the victim block to other blocks. It keeps two
active blocks: one is to hold relocated pages from the victim
block when these pages have dirty copies in the host-side
write buffer, i.e., they are in either host-shadow or twin-
shadow states; the other active block is to receive normal
writes and other relocated valid pages. As our preliminary
study show, page separation is a very effective mechanism
in mitigating the GC overhead.

In this paper, we further reduce GC overhead through
fast write operations. Flash programming widely adopts the
incremental step pulse programming (ISPP) strategy. By
using a large program step size ΔVp in ISPP, the write speed
can be improved at the cost of reduced guard band between
two states, leading to retention time reduction (relaxation).
We exploit that fact that shadow pages tend to have short
lifetime and thus relocating them can use fast write mode
that have short retention time. Note, the device-shadow
pages are relocated to normal active blocks as the up-to-
date data have been merged.

By adopting the greedy strategy in victim block selec-
tion, ShadowGC minimizes the number of page copies at
garbage collection time. Adopting fast write mode further
shortens the page copy latency, which effectively mitigates
the latency issue in GC. Since the dedicated blocks only
contain shadow pages, most pages have become invalid
when they are to be reclaimed.

1250 Design, Automation And Test in Europe (DATE 2018)



Page refresh policy. As the blocks in the dedicated
blocks are programmed using fast write mode, ShadowGC
needs to refresh these blocks if they are not reclaimed before
the retention threshold. Usually, the dedicated blocks are
more likely to have more invalid pages soon and to be
selected as victim for cleaning by ShadowGC. As a result,
they are unlikely to be refreshed. The only concern is the
restart of the storage system. After restart, the write buffer
is reset and the shadow pages return to valid, which means
the former hot dedicated blocks may become cold and the
refresh will be triggered in this case. For this purpose,
ShadowGC employs an extra refresh queue to hold blocks
written using fast write mode. Our experiments observe that
the extra refresh overhead is below 1%, where the impact
is negligible.

ShadowGC is designed to survive system crashes and
unexpected power failures. Assuming the system may lose
power for a duration of D, and the relaxed block retention
time is T , we refresh pages written in fast write mode for
every T−D interval. When restarting the system, we refresh
such pages to prevent data corruption.

3.4. Overhead Analysis

ShadowGC introduces three types of overhead: firmware
overhead, storage overhead, and computation overhead. For
the firmware overhead, since we add a dedicated block
list for relocating host-shadow and twin-shadow pages, we
demand two active blocks, i.e., the integration of multi-
streamed technology if it is not embedded already. Kang
et al. showed that the overhead is negligible [15].

For the storage overhead, as we introduce three new page
states to indicate if a page is cached in the host-side buffer
or device-side buffer, we need a 3-bit flag for each page,
while originally only 1-bit is needed. For a 128GB SSD
with the page size of 16KB [16], we need 2MB more storage
capacity, which is only additional 0.78% of 256MB RAM
capacity on state-of-the-art SSDs. The additional storage
requirement with 2MB is small compared to the size of
mapping table for FTLs, and to the available RAM of
modern SSD. Thus, the storage overhead is negligible.

For the computation overhead, each time when a new
page is placed in the write buffer or a least-recently-update
page is evicted, we need to find its current physical address
from flash translation table and update its page state in the
shadow state manager. As the translation table is usually an
associative array, we can find the physical address of logical
page i at offset i of the array, where the complexity is O(1).

4. Experiment and Analysis

4.1. Experimental setup

To evaluate the effectiveness of the proposed ShadowGC
scheme, we used an event-driven simulator [17] to simulate
a 1TB MLC NAND flash based SSD. Each block has
512 pages while each page is of 16KB. The default over-
provisioning factor of this flash memory is set as 7%. It

takes 120 μs to read a flash page, and 300 μs and 600 μs to
program a flash page using fast program mode and normal
program mode, respectively [19]. We configured the SSD
to match those in previous studies and the state-of-the-art
storage systems [19], [23]. According to previous studies,
the ratio of the write buffer to flash array approximately
ranges from 0.1% [21], [23] to 10% [20]. We conservatively
chose 128MB and tested write buffers of other sizes. The
results for large write buffers are not included in the paper
due to page limit. It takes 20 ns to read a page in the DRAM
write buffer [22].

In the experiments, we implemented and compared the
following garbage collection schemes: (1) GGC. This is the
baseline scheme that implements the traditional Greedy GC.
(2) ZGC. This is the scheme that implements the Zombie-
Aware GC [10], which delays the selection of flash blocks
with many zombie pages (having dirty copies in the host-
side write buffer). (3) HGC. This is the ShadowGC scheme
that is developed on top of GGC. For evaluation purpose, we
only exploit the pages in the host-side write buffer. That is,
the device-side write buffer is used the same as that in the
baseline. (4) DGC. This is the ShadowGC scheme that is
developed on top of GGC. It only exploits the pages in the
device-side write buffer. That is, the host-side write buffer is
used the same as that in the baseline. (5) SGC. This is the
proposed ShadowGC scheme with pages from both write
buffers exploited for performance improvement.

We used the traces from the MSR Cambridge traces and
UMass Trace repository. These traces are widely used for
studying SSD performance [18], [19]. Before each simula-
tion, the SSD is filled with uniform random workloads so
that GC may be triggered for evaluation.

4.2. Efficiency on Garbage Collection

Figure 6. Comparing write amplification in different schemes.

Fig. 6 compares the GC-induced write amplification
in different schemes. From the figure, ZGC, HGC and
DGC reduce the average write amplification by 0.9%, 6.4%
and 2.3% respectively over Greedy GC, while ShadowGC
achieves 16.2% reduction. ShadowGC achieves the largest
reduction, i.e., 43.4%, in proj1, and the smallest reduction,
i.e., 0.6%, in msnfs. The write amplification reduction comes
from: (1) Due to the improved ratio of clean pages in
the buffer, the number of writes for eviction is reduced in
both DGC and ShadowGC schemes; (2) Since the dedicated
blocks that hold relocated host-shadow and twin-shadow
pages tend to be invalidated soon, the average number of
page copy operations is reduced in ZGC, HGC and Shad-
owGC schemes.

Fig. 7 compares the accumulative GC induced latency
in different schemes, with the results normalized to Greedy

Design, Automation And Test in Europe (DATE 2018) 1251



Figure 7. Comparing write GC latency in different schemes.

GC. ShadowGC achieves 20.5% latency reduction compared
to Greedy GC. The improvement comes mainly from: (1)
Due to the device-shadow and twin-shadow pages, which are
read from buffer directly without ECC, the read latency of
these flash pages is reduced. (2) Due to the host-shadow and
twin-shadow pages, which are programmed quickly with a
large program step size, the program latency is reduced.

Figure 8. The percentage of different shadow pages in ShadowGC.

To fully understand the performance improvement in
ShadowGC, Fig. 8 reports the percentage of different shad-
ow pages. By comparing with the write amplification reduc-
tion in Fig. 6 and the GC latency reduction in Fig. 7, we
observed that the more shadow pages there are, e.g., proj1,
the larger improvement ShadowGC achieves.

5. Conclusion

In this paper, we proposed ShadowGC, a novel GC de-
sign that exploits the pages in both host-side and device-side
write buffers and adopts different read and write strategies
to minimize the GC overhead. When garbage collecting
flash pages that have dirty copies in the device-side write
buffer, ShadowGC reads data from the write buffer such that
expunging these cleared pages at a later time introduces no
additional writes. When garbage collecting flash pages that
have dirty copies in the host-side write buffer, ShadowGC
moves them to dedicated blocks and speeds up the move-
ment with fast-write operations. Experimental results show
that ShadowGC outperforms its competitors.

Acknowledgment

This work is supported in part by the National Key
Research and Development Program of China under grant
2016YFB1000303, in part by the Joint Research Fund for
Overseas Chinese, Hong Kong and Macao Young Scientists
of the National Natural Science Foundation of China under
Grant 61628210, in part by National Science Foundation of
USA under Grant CCF-1718080, and in part by the National
Natural Science Foundation of China under grant 61672423,
and in part by the Key Science and Technology Program of
Shaanxi Province, China under Grant 2016SF-428.

References

[1] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma,
and M. k. Qureshi, “FlashBlox: Achieving Both Performance Isolation
and Uniform Lifetime for Virtualized SSDs,” FAST, pp. 375–390, 2017.

[2] Y. Lee, J. Kim, S. Lee, and S. Maeng, “Exploiting Sequential and
Temporal Localities to Improve Performance of NAND Flash-Based
SSDs,” ACM Transactions on Storage, vol. 12, no. 3, pp. 15, 2016.

[3] Y. Cai, G. Yalcin, O. Mutlu, E. Haratsch, A. Cristal, O. Unsal, and
K. Mai, “Flash correct-and-refresh: Retention-aware error management
for increased flash memory lifetime,” ICCD, pp. 94–101, 2013.

[4] M. Shafaei, D. Peter, and F. Jim, “Write amplification reduction
in flash-based SSDs through extent-based temperature identification,”
HotStorage, 2016.

[5] F. Margaglia, G. Yadgar, E. Yaakobi, Y. Li, A. Schuster, and A.
Brinkmann, “The Devil Is in the Details: Implementing Flash Page
Reuse with WOM Codes,” FAST, pp. 95–109, 2016.

[6] G. Yadgar, E. Yaakobi, and A. Schuster, “Write Once, Get 50% Free:
Saving SSD Erase Costs Using WOM Codes,” FAST, pp. 257–271,
2015.

[7] J. Guo, C. Min, T. Cai, and Y. Chen, “A design to reduce write
amplification in object-based NAND flash devices,” CODES+ISSS, pp.
1–10, 2016.

[8] H. Chang, C. Ho, Y. Chang, Y. Chang, and T. Kuo, “How to enable
software isolation and boost system performance with sub-block erase
over 3D flash memory,” CODES+ISSS, pp. 6, 2016.

[9] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and M. Kandemir, “HIOS:
A host interface I/O scheduler for solid state disks,” ACM SIGARCH
Computer Architecture News, vol. 42, no.3, pp. 289–300, 2014.

[10] Y. Lee, J. Kim, S. Lee, and S. Maeng, “Zombie chasing: Efficient
flash management considering dirty data in the buffer cache,” IEEE
Transactions on Computers, vol. 64, no. 2, pp. 569–581, 2015.

[11] E. Lee, J. Kim, H. Bahn, and S. Noh, “Reducing Write Amplification
of Flash Storage through Cooperative Data Management with NVM,”
MSST, 2016.

[12] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee, “CFLRU: a replacement
algorithm for flash memory,” CASES, pp. 234–241, 2006.

[13] J. Cui, W. Wu, Y. Wang, and Z. Duan, “PT-LRU: a probabilistic page
replacement algorithm for NAND flash-based consumer electronics,”
IEEE Transactions on Consumer Electronics, vol. 60, no. 4, pp. 614–
622, 2014.

[14] H. Kim, and S. Ahn, “BPLRU: A Buffer Management Scheme for
Improving Random Writes in Flash Storage,” FAST, pp. 1–14, 2008.

[15] J. Kang, J. Hyun, H. Maeng, and S. Cho, “The Multistreamed Solid-
state Drive,” HotStorage, 2014.

[16] J. Im, W. Jeong, D. Kim, et. al, “A 128Gb 3b/cell V-NAND Flash
Memory with 1Gb/s I/O Rate,” ISSCC, 2015.

[17] P. Desnoyers, “Analytic models of SSD write performance,” ACM
Transactions on Storage, vol. 10, no. 2, pp. 8, 2014.

[18] N. Elyasi, M. Arjomand, A. Sivasubramaniam, M. T. Kandemir,
C. R. Das, and M. Jung, “Exploiting Intra-Request Slack to Improve
SSD Performance,” In ASPLOS, pp. 375–388, 2017.

[19] J. Cui, W. Wu, X. Zhang, J. Huang, and Y. Wang, “Exploiting latency
variation for access conflict reduction of NAND flash memory,” MSST,
2016.

[20] C. Wang, W. Wong, “TreeFTL: An Efficient Workload-Adaptive
Algorithm for RAM Buffer Management of NAND Flash-Based De-
vices,” IEEE Transactions on Computers, vol. 65, no. 8, pp. 2618–
2630, 2016.

[21] D. Kang, S. Han, Y. Kim, and Y. Eom, “CLOCK-DNV: a write buffer
algorithm for flash storage devices of consumer electronics,” IEEE
Transactions on Consumer Electronics, vol. 63, no. 1, pp. 85–91, 2017.

[22] K. Chang, A. Kashyap, H. Hassan, S. Hsieh, D. Lee, T. Li, G. Khan,
and O. Mutlu, “Understanding Latency Variation in Modern DRAM
Chips: Experimental Characterization, Analysis, and Optimization,”
SIGMETRICS, pp. 323–336, 2016.

[23] Samsung 960 EVO 1TB M.2 PCIe NVMe SSD Review.
https://www.kitguru.net/components/ssd-drives/simon-crisp/samsung-
960-evo-1tb-m-2-pcie-nvme-ssd-review/

1252 Design, Automation And Test in Europe (DATE 2018)


